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Strategic-Form Representation

A strategic-form representation has three ingredients:

I Players,

I Strategies,

I Payoffs.

I Note: payoffs depend not only on your own strategy, but
the strategies of other players.

More formally:
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Strategic-Form Games

Definition. A strategic-form (or normal-form) game consists of:

1. Players. A set of agents who play the game N, with typical
member i ∈ N.

2. Strategies. A strategy is a complete plan of action specifying
what a player will do at every point at which she may be called
upon to play. For each i ∈ N there is a nonempty set of strategies
Si with typical element si ∈ Si.

3. Payoffs. A payoff function ui : S 7→ R assigned to each player i,
where S = ×i∈NSi.

Anything with these three features can be written as a strategic-form
game: G = 〈N, {Si}i∈N, {ui}i∈N〉.

5 / 30



Strategic-Form Games

Aggregate Behavior:

I A collection of strategies s ∈ S = ×i∈NSi is called a strategy
profile.

Preferences over Strategy Profiles & Utility:

I There is a preference relation �i over strategy profiles for each
player i; in fact, we will often require vNM utility functions ui.

We focus heavily on games with two players and a finite number of
strategies:

I These games can be represented by a payoff matrix.
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The Prisoners’ Dilemma
“Two suspects are arrested for a crime, and interviewed separately. If
they both keep quiet (they cooperate with each other) they go to prison
for a year. If one suspect supplies incriminating evidence (defects)
then that one is freed, and the other one is imprisoned for nine years.
If both defect then they are imprisoned for six years. Their preferences
are solely contingent on any jail term they individually serve.”

Players. The players are the two suspects N = {1, 2}.
Strategies. The strategy set for player 1 is S1 = {C,D}, and for

player 2 is S2 = {C,D}.
Payoffs. Represent the payoffs in the strategic-form payoff

matrix:

C D

C −1
−1

0
−9

D −9
0

−6
−6
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Dominant-Strategy Equilibrium

There are no real strategic issues in the one-shot Prisoners’ Dilemma.

As long as players are rational (they choose the best available action
given their preferences), each will play D:

C D

C −1
−1 ⇒ 0

−9
⇓ ⇓

D −9
0 ⇒ −6

−6

{D,D} is a dominant-strategy equilibrium.

It is also inefficient: both players are better off if (C,C) is played.
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Nash Equilibrium

Definition. A Nash equilibrium is a strategy profile s∗ ∈ S such that for
each i ∈ N,

ui(s∗i , s∗−i) ≥ ui(si, s∗−i) ∀si ∈ Si.

At s∗, no i regrets playing s∗i . Given all the other players’ actions, i
couldn’t have done better.

Hence a Nash equilibrium is a strategy profile from which no player
has a profitable unilateral deviation.
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Nash Equilibrium

Definition. The best-reply correspondence for player i ∈ N is a
set-valued function Bi such that:

Bi(s−i) =
{

si ∈ Si | ui(si, s−i) ≥ ui(s′i, s−i), ∀s′i ∈ Si
}
.

So that Bi(s−i) ⊆ Si “tells” player i what to do when the other players
play s−i. Hence:

Definition. s∗ ∈ S is a Nash equilibrium if and only if s∗i ∈ Bi(s∗−i) for
all i ∈ N.

In words: a Nash equilibrium is a strategy profile of mutual best
replies. Each player picks a best reply to the combination of strategies
chosen by the other players.
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Mixed Extension
Definition. The mixed extension of a game G = 〈N, {Si}i∈N, {ui}i∈N〉 is
the game Γ, where:

1. Γ = 〈N, {∆(Si)}i∈N, {Ui}i∈N〉.

2. ∆(Si) is the set of probability distributions over Si, and
∆(S) = ×i∈N∆(Si).

3. Ui : ∆(S) 7→ R is a vNM expected utility function that assigns to
each σ ∈ ∆(S) the expected value under ui of the lottery over S
induced by σ.

Consider part (3) for finite games. Suppose player i plays mixed
strategy σi ∈ ∆(Si). Denote the probability that this places on pure
strategy si ∈ Si as σi(si). Then,

Ui(σ) = ∑
s∈S

ui(s) ∏
j∈N

σj(sj).

Notation. Define σ−i ∈ ∆(S−i) = ×j 6=i∆(Sj) analogously to the pure
strategy case.
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A Coordination Game

Stag Hunt

H S
H 2

2
0

2
S 2

0
3

3

NE:

I (H,H), (S,S)

I ( 1
3 ,

2
3 ) for both players.
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An Anti-Coordination Game

Hawk Dove

Hawk Dove
Hawk −2

−2
0

4
Dove 4

0
0

0

NE:

I (Hawk,Dove), (Dove,Hawk)

I ( 2
3 ,

1
3 ) for both players.
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Existence of Nash Equilibrium*

Theorem. (Nash 1951) Every finite strategic-form game has at least one
Nash equilibrium.

Recall that σ∗ ∈ ∆(S) is a Nash equilibrium if and only if σ∗i ∈ Bi(σ
∗
−i)

for all i ∈ N.

This condition can be expressed as σ∗ ∈ B(σ∗), where the best-reply
correspondence B(σ) = ×i∈NBi(σ). That is, σ∗ must be a fixed point
of the best-reply correspondence.

Hence proving the existence of a Nash equilibrium reduces to
proving the existence of a fixed point.

Brouwer’s fixed-point theorem guarantees the existence of a fixed
point for certain functions, but does not apply to correspondences.
The relevant theorem is due to Kakutani.
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Kakutani’s Fixed Point Theorem*

Theorem. A correspondence g : X→ X has a fixed point x ∈ X if:

1. X is a compact, convex and non-empty set ofRn.

2. g(x) is nonempty for all x.

3. g(x) is convex for all x.

4. g has a closed graph (no holes).

To prove the existence of a Nash equilibrium, we need to show that
every finite strategic-form game satisfies the conditions of Kaku-
tani’s theorem.

– Nash equilibria have also been shown to exist when strategy sets
are continuous under certain conditions (e.g. continuity of payoffs).
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Requirements for Nash Equilibrium Play

The traditional justification for NE as a “rational” outcome of a
game requires three things.

1. Players are rational:
I They can formulate strategies that maximize their payoff

given what everyone else is doing.

2. Players have knowledge of the game they are playing:
I They know the strategy set,
I They know the payoffs generated by each strategy profile.

3. Players have equilibrium knowledge:
I They can correctly anticipate what other players will do.
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Requirements for Nash Equilibrium Play

All of these requirements pose problems:

1. Players are rational:
I They can formulate strategies that maximize their payoff

given what everyone else is doing. (consider chess)

2. Players have knowledge of the game they are playing:
I They know the strategy set, (consider sports)
I They know the payoffs generated by each strategy profile.

(consider traffic congestion)

3. Players have equilibrium knowledge:
I They can correctly anticipate what other players will do.

(consider games with multiple equilibria such as Stag
Hunt and Hawk Dove)
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The Problem of Equilibrium Knowledge

In economics, typically prediction = equilibrium.

Are the following disequilibria not reasonable?

I Player 1 chooses stag expecting player 2 to choose stag. But,
player 2 chooses hare, expecting player 1 to choose hare.

I Player 1 chooses hawk expecting player 2 to choose dove.
But, player 2 chooses hawk, expecting player 1 to choose
dove.

These are both collections of rationalizable strategies:

I Each player’s strategy is a best response to some
rationalizable belief about the other player’s strategy.
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The Problem of Equilibrium Selection

Another problem is that of multiple equilibria.

I Nash theorem guarantees the existence of at least one NE
in a large class of games.

I However, it does NOT in general make a unique prediction
of play.

I Which NE is the most “plausible” prediction?
I The equilibrium refinements program emerged to address

this question.
I Placed unreasonable burdens on the rationality of players.
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Coordination & Focal Points

I Schelling’s experiments:

– Two people are to meet in New York city, but have forgotten
the time and place. Where would they try to meet and when?

– The strategy space would seem to be impossibly large.

– Yet under the clock at Grand Central Station at 12 noon was
chosen by the majority of students surveyed.

I Schelling’s theory of focal points: some equilibria have intrinsic
properties that make them focal or have become conventional
through recurrent play.
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Classical Game Theory

We repeat most emphatically that our theory is thoroughly
static. A dynamic theory would unquestionably be more
complete and preferable.

von Neumann and Morgenstern (1944, p. 44-45)
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Learning to Play Nash
Fictitious Play (Brown 1951):

I Start with a random initial history of choices by row and column
players.

I In round 1 of play, row player is able to revise his strategy best
responding to column’s history of choices.

I In round 2 of play, column player is able to revise his strategy
best responding to row’s history of choices.

I Repeat . . .

If the process converges — for some finite period T, row chooses
some strategy s and column chooses some strategy s′ (possibly s) for
all t ≥ T — then (s, s′) is a Nash equilibrium.

But the process does not always converge. In some games, players
may never learn to play a Nash equilibrium via fictitious play.
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Evolution and Learning in Games

We shall now take up the “mass-action” interpretation of
equilibrium points... It is unnecessary to assume that the
participants have full knowledge of the total structure of the
game, or the ability and inclination to go through any com-
plex reasoning processes. But the participants are supposed
to accumulate empirical information on the relative advan-
tages of the various pure strategies at their disposal.

John Nash (PhD thesis, p. 21)
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An Evolutionary Approach

Partly in response to the shortcomings of the equilibrium
refinements program, a new field emerged known as
evolutionary game theory.

The evolutionary approach to the social sciences is based on:

I boundedly rational

I populations of agents,

I who may (or may not) learn or evolve their way into
equilibrium,

I by gradually revising

I simple, myopic rules of behavior.
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Bounded Rationality

This is a model of bounded rationality in which knowledge
and computation are distributed.

Learning about the environment and the behavior of other
players takes place at the population level through dynamic
processes including:

I natural selection

I imitation

I reinforcement learning

I Bayesian social learning

I myopic best responses

I cultural transmission.
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Out-of-Equilibrium Dynamics

By specifying an explicit dynamic process of adjustment to
equilibrium, analyses of evolution and learning in games
enable us to address the following questions:

1. Are equilibria stable in the face of random shocks? (local
stability)

2. Does evolution/learning lead to an equilibrium from any
initial state? (global convergence and noncovergence)

3. To which equilibria, if any, does an evolutionary dynamic
lead? (equilibrium selection)
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Population Games

Players
I The population is a set of agents (possibly a continuum).

Strategies
I The set of (pure) strategies is S = {1, . . . ,n}, with typical

members i, j and s.

I The mass of agents choosing strategy i is mi, where
∑n

i=1 mi = m.

I Let xi =
mi
m denote the share of players choosing strategy

i ∈ S.
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Population States

I The set of population states (or strategy distributions) is
X = {x ∈ Rn

+ : ∑i∈S xi = 1}.
I X is the unit simplex in Rn.

I The set of vertices of X are the pure population
states—those in which all agents choose the same strategy.

I These are the standard basis vectors in Rn:

e1 = (1, 0, 0, . . .), e2 = (0, 1, 0, . . .), e3 = (0, 0, 1, . . .), . . .

Payoffs

I A continuous payoff function F : X→ Rn assigns to each
population state a vector of payoffs, consisting of a real
number for each strategy.

I Fi : X→ R denotes the payoff function for strategy i.
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Equivalence to Mixed Strategies

Consider the expected payoff to strategy i if i is matched with
another strategy drawn uniformly at random from the
population to play the following two-player game:

1 2 . . . n
i u(i, 1) u(i, 2) . . . u(i,n)

The expected payoff to strategy i in state x is:

Fi(x) = x1u(i, 1) + x2u(i, 2) . . . + xnu(i,n)

=
n

∑
j=1

xju(i, j)

=
n

∑
j=1

xjFi(ej).
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Nash Equilibria of Population Games

x∗ is a Nash equilibrium of the population game if

(x∗ − x)′F(x∗) ≥ 0 for all x ∈ X.

I Monomorphic equilibria: x∗ = ei.

I Polymorphic equilibria: x∗ 6= ei for some i ∈ S; requires
Fi(x∗) = Fj(x∗) ≥ Fk(x∗)) for all i, j in support of x∗ and k
not in the support of x∗.
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