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Local Stability

Where global convergence does not occur (or cannot be
proved), we can at least say something about the local stability
of the rest points of an evolutionary dynamic.

I We first define local stability concepts.

I We then explore the relationship between ESS (a
payoff-based concept) and local stability under
deterministic dynamics.

I Finally, we shall examine two methods of analyzing local
stability, via:

I Lyapunov functions,
I Linearization of dynamics.
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Perturbation

I Define Bε(x) as a ball of radius ε > 0 around x.

I An ε-perturbation at a rest point x∗ is a trajectory starting
at some point x0 ∈ Bε(x∗)− {x∗}.

I xt ε-escapes x∗ if starting at x0 ∈ Bε(x∗) there exists a T
such that xt /∈ Bε(x∗) for all t > T.

I Any displacement causes the process to move away from A
and remain so for all time.
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Lyapunov Stability

I Let A ⊆ X be a closed set, and call O ⊆ X a neighborhood
of A if it is open relative to X and contains A.

I A is Lyapunov stable (or neutrally stable) if for every
neighborhood O of A, there exists a neighborhood O′ of A
such that every solution {xt} that starts in O′ is contained
in O, that is, x0 ∈ O′ implies that xt ∈ O for all t ≥ 0.

I For every nhd of A, one can find an ε-perturbation that
remains within this nhd.

I Any displacement from A does not lead the process to go
‘far’ from A at any point in time.

I If a state is not Lyapunov stable, it is unstable.
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Attractors

I A is attracting if there is a neighborhood Y of A such that
every solution that starts in Y converges to A, that is,
x0 ∈ Y implies ω({xt}) ⊆ A.

I The set of points x0 ∈ X such that starting at x0,
limt→∞ xt ∈ A is the basin of attraction of A.

I A is globally attracting if it is attracting with Y = X.

I Intuitively, this requires that given any displacement from
A, the process returns to A in the limit.
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Asymptotic Stability

I A is asymptotically stable if it is Lyapunov stable and
attracting.

I A is globally asymptotically stable if it is Lyapunov stable
and globally attracting.

I Intuitively, this requires that given any displacement from
A, the process never travels ‘very far’ from A and returns to
A in the limit.
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Non-Nash Rest Points of Imitative Dynamics

Clearly then, non-Nash rest points of imitative dynamics are
not plausible predictions of play.

Proposition 8.1. Let VF be an imitative dynamic for population
game F, and let x̂ be a non-Nash rest point of VF. Then x̂ is not
Lyapunov stable under VF, and no interior solution trajectory
of VF converges to x̂.

Example. xR = 1 is a restricted equilibrium of standard RPS
(when xP = 0) and a non-Nash rest point of replicator dynamic.
Any displacement results in closed orbit around x∗ = 1

3 which
takes xR(t) ‘far’ from xR = 1. Hence not Lyapunov stable.
But the process does not ε-escape xR = 1 (eventually returns to
original nhd).
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Lyapunov Functions and Stability
Theorem 8.2 (Lyapunov Stability) Let A ⊆ X be closed and let
Y ⊆ X be a neighborhood of A. Let L : Y→ R+ be Lipschitz
continuous with L−1(0) = A. If each solution {xt} of VF
satisfies L̇(xt) ≤ 0 for almost all t ≥ 0, then A is Lyapunov
stable under VF.

Theorem 8.3. (Asymptotic Stability) Let A ⊆ X be closed and let
Y ⊆ X be a neighborhood of A. Let L : Y→ R+ be C1 with
L−1(0) = A. If each solution {xt} of VF satisfies L̇(xt) < 0 for all
x ∈ Y−A, then A is asymptotically stable under VF. If in
addition, Y = X, then A is globally asymptotically stable under
VF.

Example. Unique Nash equilibrium x∗ = 1
3 of standard RPS is

globally asymptotically stable under the BR dynamic and
Lyapunov stable under Replicator dynamic.
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Evolutionarily Stable States

I We have already introduced the notion of evolutionarily
stable states (ESS) in a single population setting.

I Suppose x is an ESS. Consider a fraction ε of mutants who
switch to y 6= x. Then the average post-entry payoff in the
incumbent population is higher than that in the mutant
population, for ε sufficiently small.

I We showed that this is equivalent to:

Suppose x is an ESS. Consider a fraction ε of mutants who
switch to y. Then the average post-entry payoff in the
incumbent population is higher than that in the mutant
population, for y sufficiently close to x.
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Evolutionarily Stable States

I Thus an ESS is defined with respect to population averages
and explicitly it says nothing about dynamics.

I We shall now extend the ESS concept to a multipopulation
setting and relate it to the local stability of evolutionary
dynamics.
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Taylor ESS

Definition. If F is a game played by p ≥ 1 populations, we call
x ∈ X a Taylor ESS of F if:

There is a neighborhood O of x such that (y− x)′F(y) < 0 for
all y ∈ O− {x}.

This is the same as the statement for single-population games,
except F can now be a multipopulation game.

Note that in the multipopulation setting:

X = ∏
p∈P

Xp = {x = (x1, ..., xp) : xp ∈ Xp}.
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Taylor ESS

Once again, we have the result:

Theorem 8.4. Suppose that F is Lipschitz continuous. Then x is
a Taylor ESS if and only if:

x is a Nash equilibrium: (y− x)′F(x) ≤ 0 for all y ∈ X, and

There is a neighborhood O of x such that for all y ∈ O− {x},
(y− x)′F(x) = 0 implies that (y− x)′F(y) < 0.
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Regular Taylor ESS

I For some local stability results we require a strengthening
of the Nash equilibrium condition.

I In a quasistrict equilibrium x, all strategies in use earn the
same payoff, a payoff that is strictly greater than that of
each unused strategy.

I This is a generalization of strict equilibrium, which in
addition requires x to be a pure state.

I The second part of the Taylor ESS condition is also
strengthened, replacing the inequality with a differential
version.
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Regular Taylor ESS

Definition. We call x a regular Taylor ESS if and only if:

x is a quasistrict Nash equilibrium: Fp
i (x) = Fp

(x) > Fp
j (x)

when xp
i > 0, xp

j = 0, and

For all y ∈ X− {x}, (y− x)′F(x) = 0 implies that
(y− x)′DF(x)(y− x) < 0.

Note: every regular Taylor ESS is a Taylor ESS.
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Local Stability via Lyapunov Functions

We can use Lyapunov functions to prove the following
theorems which establish the connection between ESS and local
stability:

Theorem 8.5. Let x∗ be a Taylor ESS of F. Then x∗ is
asymptotically stable under the replicator dynamic for F.

Theorem 8.6. Let x∗ be a regular Taylor ESS of F. Then x∗ is
asymptotically stable under the best response dynamic for F.
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Local Stability via Lyapunov Functions

Theorem 8.7. Let x∗ be a regular Taylor ESS of F. Then for some
neighborhood O of x∗ and each small enough η > 0, there is a
unique logit(η) equilibrium x̃η in O, and this equilibrium is
asymptotically stable under the logit(η) dynamic. Finally, x̃η

varies continuously in η, and limη→0 x̃η = x∗.
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Linearization of Dynamics

I Another technique for establishing local stability of a rest
point is to linearize the dynamic around the rest point.

I This requires the dynamic to be smooth around the rest
point, but does not require the guesswork of finding a
Lyapunov function.

I If a rest point is found to be stable under the linearized
dynamic, then it is linearly stable.

I Linearization will also show when a rest point is unstable
and can thus be used to prove nonconvergence.
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Linear Approximation

Recall that the linear (first-order Taylor) approximation to a
function F around point a is:

F(a + h) ≈ F(a) + DF(a)h.

Let o(|h|) be the remainder, the difference between the two
sides:

o(|h|) ≡ F(a + h)− F(a)−DF(a)h.
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Linear Approximation

To illustrate, suppose F is a function of one variable. Then:

o(|h|)
h

=
F(a + h)− F(a)

h
− F′(a)→ 0 as h→ 0,

by the definition of the derivative F′(a).

The approximation gets better as h gets smaller and it gets
better at an order of magnitude smaller than h.
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Eigenvalues & Eigenvectors

Let A be an n× n matrix. Recall that a non-zero vector v is an
eigenvector of A if it satisfies:

Av = λv,

for some scalar λ called an eigenvalue of A.

Note that:

Av = λv =⇒ (A− λI)v = 0 =⇒ |A− λI| = 0.

Therefore, an eigenvalue of A is a number λ which when
subtracted from each of the diagonal entries of A converts A
into a singular matrix.
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Eigenvalues & Eigenvectors

EXAMPLE: A =

(
−1 3
2 0

)
|A− λI| = λ2 + λ− 6 = (λ + 3)(λ− 2).

Therefore, A has two eigenvalues λ1 = −3 and λ2 = 2.
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Linearization of Dynamics
I A single-population dynamic ẋ = V(x), which we shall

refer to as (D), describes the evolution of the population
state through the simplex X.

I Near x∗, the dynamic (D) can typically be well
approximated by the linear dynamic:

ż = DV(x∗)z, (L)

where (L) is a dynamic on the tangent space
TX = {z ∈ Rn : ∑i∈S zi = 0}.

I (L) approximates the motion of deviations from x∗

following a small displacement z.
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Linear Stability

Theorem 8.8. (Linearization theorem) Suppose every eigenvalue
of DV(x∗) has non-zero real part at fixed point x∗.

Then x∗ is asymptotically stable under (D) if the origin is
asymptotically stable under (L).

Also, if x∗ is asymptotically stable, then no eigenvalue of
DV(x∗) has positive real part.
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Eigenvalues and Stability

I Note that if DV(x∗) is positive definite, i.e. z′DV(x∗)z > 0
for all nonzero z ∈ TX, then all eigenvalues have positive
real part.

—Therefore, x∗ is unstable; all solutions that start near x∗

are repelled.

I If DV(x∗) is negative definite, i.e. z′DV(x∗)z < 0 for all
nonzero z ∈ TX, then all eigenvalues have negative real
part and the opposite is true.
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ESS and Linear Stability

Theorem 8.9. Let x∗ be a regular Taylor ESS of F. Then x∗ is
linearly stable under the replicator dynamic.

Theorem 8.10. Let x∗ ∈ int(X) be a regular Taylor ESS of F.
Then for some neighborhood O of x∗ and all η > 0 less than
some threshold η̂, there is a unique and linearly stable logit(η)
equilibrium x̃η in O.
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Linear Dynamics in One Dimension

ẋ = f (x)

with fixed point f (x∗) = 0.

1. x∗ is linearly stable if f ′(x∗) < 0 (e.g. mixed Nash in
Hawk-Dove).

2. x∗ is linearly unstable if f ′(x∗) > 0 (e.g. mixed Nash in
coordination game).

26 / 31



Linear Dynamics on the Plane

There are three generic types of 2× 2 matrices:

1. Diagonalizable matrices with two real eigenvalues.

2. Diagonalizable matrices with two complex eigenvalues.

3. Nondiagonalizable matrices with one real eigenvalue.
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Linear Dynamics on the Plane

1. When DV(x∗) has two real eigenvalues, λ and µ, the solution
to (L) from initial condition z0 = ξ is:

zt =

(
ξ1eλt

ξ2eµt

)
.

I If λ and µ are both negative, then the origin is a stable node,

I If both are positive, then the origin is an unstable node, and

I If the signs differ, then the origin is a saddle.
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Linear Dynamics on the Plane

2. When DV(x∗) has two complex eigenvalues a± ib, then:

zt =

(
ξ1eatcosbt + ξ2eatsinbt
ξ1eatsinbt + ξ2eatcosbt

)
.

The stability of the origin is determined by the real part of the
eigenvalues:

I If a < 0, then the origin is a stable spiral,

I If a > 0, then the origin is an unstable spiral, and

I If a = 0, then the origin is a center, with each solution
following a closed orbit around the origin.
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Linear Dynamics on the Plane

3. When DV(x∗) has lone eigenvalue λ:

zt =

(
ξ1eλt + ξ2teλt

ξ2eλt

)
.

The origin is:

I stable if λ < 0,

I unstable if λ > 0.
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Information from Linearization

Linearization has provided more information about equilibria
than just stability (e.g. node, center, saddle etc.).

In fact:

Theorem 8.11. (Hartman-Grobman) Suppose every eigenvalue
of DV(x∗) has non-zero real part at fixed point x∗.

Then the dynamical system (D) at x∗ is topologically equivalent
to the linearized system (L) at the origin.
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